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Silver Street, Cambridge CB3 9EW, UK 

Received 29 May 1984 

Abstract. The classical and quantum mechanical formalisms of the model are developed. 
The quantisation is performed in such a way that the quantum theory can be represented 
explicitly in as simple a form as possible, and the problem of ordering of operators is 
resolved so as to maintain the extended N = 2 supersymmetry algebra of the classical theory. 

1. Introduction 

In this paper we study the extended N = 2 supersymmetric nonlinear u-model in one 
(time) dimension. Our motivation for this work has been discussed in a previous study 
(Davis et a1 1984) where analogous results for the N = 1 models have been presented. 
We therefore limit our presentation to that of results and discussion of those aspects 
of the N = 2 theory that differ fromqthe N = 1 theory. Since the base manifold in the 
former is a Kahler manifold, as compared with a Riemann manifold in the latter, the 
calculations are of a somewhat different nature. In the N = 1 quantum theory, the 
hermiticity was sufficient to resolve the order of operator problem for the supercharges 
and, through the corresponding supersymmetry algebra, that of the Hamiltonian. Here 
the same is achieved by demanding that the derived N = 2 supersymmetry algebra is 
satisfied by the supercharges and Hamiltonian and the obvious classical limits obtained. 

The paper is organised as follows. After a brief description in § 2 of the derivation 
of the classical supersymmetric Lagrangian and supercharges we proceed in § 3 to 
derive the classical canonical formalism, using the Dirac bracket formalism to take 
account of the second class constraints of the theory. We observe that a change of 
variables allows the formalism to exhibit the geometrical structure of the theory. In 
§ 4 the canonical formalism is expressed in terms of a new set of variables, which has 
the property of decoupling the Grassmann variables from the rest and ‘diagonalising’ 
the Dirac brackets, thus allowing a simple representation in the quantum theory. In 
0 5 the fundamental quantum commutation relationships are written down for the three 
sets of variables introduced, with the operator ordering ambiguities resolved. Finally 
in § 6 we derive the quantum mechanical supercharges and Hamiltonian with their 
problem of the order of operators also completely resolved. 

2. The classical N = 2 theory 

The Lagrangian of a nonlinear a-model with N complex scalar fields A’ taking values 

0305-4470/84/152955 +07$02.25 @ 1984 The Institute of Physics 2955 



2956 A J Macfarlane and P C Popat 

in a complex Kahler manifold can be written in one (time) dimension as 

L = h,(A, A)  a,A' a,A'. (2.1) 

Here the bar denotes complex conjugation and h ,  is the Kahlerian metric of the 
manifold. In fact (Zumino 1979, Alvarez-Gaume and Freedman 1981) the construction 
of the N = 2 supersymmetric theory requires that the non-linear u-model is defined 
on a Kahler manifold. 

The Kahler property requires the existence of a potential V(A,  A) (Alvarez-Gaume 
and Freedman 1980, Flaherty 1976, Zumino 1979) such that 

h, = 2a2v(~, A)/aA' aAJ. (2.2) 

In terms of V the Lagrangian of the supersymmetric extension of the theory is 
(Zumino 1979) 

L = $EnpEySDaDyaDgV(4, &)lo, (2.3) 

where the 0, are the supercovariant derivatives, 4' the chiral superfields defined by 
Dq5 = D& = 0 and the notation 'lo' indicates that values at 8 = 6= 0 be taken. The 
independent complex fields contained in 4 are given by 

A' = 4'10, Y, = 2-1'20u4110, F'  = ~ E , ~ D , D ~ ~ ' ~ ~ .  (2.4) 

The Lagrangian (2.3) can be evaluated in terms of these fields. Upon use of their 
equations of motion to eliminate the auxiliary fields F' and PJ, we obtain (Zumino 1979) 

L= h, &A' &A' +$ih,(@ ,a,$', -a,tj',$',) 

where the curvature tensor of the manifold is given by 

and h"" is the inverse of the metric tensor, i.e. hm"hkn = hnmhnk = 6;. 
The supercharges Qa and 0, are found by considering a supersymmetry transforma- 

tion of the form 4i + 4i + 64i with complex Grassman parameters E,, and Noether's 
theorem written in the form 

+(Hermitian conjugate). 

K is obtained from the variation SV(c$, 6) of the potential under the supersymmetry 
transformation via 

a , (  K + K )  = 6L = ~&,pEyBDaDyDGDp6V( 4, &lo. 
Using 6A' = 64'1,, and S$',  = 2-l'2D,S4'10, etc, we are led to 

Q, = 2"2~ag$ighr j .  a,iiJ, Q, = 21'2~ms@sh,  3,A'. ( 2 . 7 )  
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3. Classical canonical formulations 

From (2.5) we find for the conjugate momenta 

We see from (3.1) that the canonical formulation leads to constraints 

xi, = r,, +ti  h&', = 0, f i a  = fla +$ h,$', = 0. (3.3) 

These are second class constraints (Dirac 1964) and are the only constraints in the 
model. They can be taken into account by using the Dirac (1964) formalism suitably 
generalised (Casalbuoni 1976) to include anticommuting quantities. 

The non-vanishing Poisson brackets for the theory are 

(3.4a, b )  

(3.4c) 

plus the corresponding ones for the complex conjugate variables. For any two fields 
A and B the Dirac bracket, {A, B}*, is defined in this theory to be 

{A, B}*={A, E}-i{A,xia}hu{Zja, B}-i{A, ZJ,}hU{x,,, B) (3.5) 

Within the Dirac bracket formalism the constraints can be set equal to zero since 
the Dirac bracket of any field with any one of the constraints vanishes (Dirac 1964). 

The non-vanishing Dirac brackets for the independent fields are 

{Pi, A'}* = -a{, { * l a ,  3 j p } * =  -ih"S 4 (3.6a, b )  

{Pi, $Ja}* = &h'"(ahk,/aA1)$k,, 

{Pi, pa}* =$hmJ(ah,k/aA')$ka, 

plus those involving the complex conjugate variables. 
The Hamiltonian H is given by 

H = r i h V i j j  + a k i j k r q ' a & , B ~ p * i ~ & ~ ~ * k ~  

where 

i ah,, -, - i ah,, -, 
i j i  = p. +- -* ,*"U. 

I 2 aAi -* a v , ,  r .  = p. -- 
' ' 2 aA' 

( 3 . 6 ~ )  

(3.6d) 

(3.6e) 

(3 .V) 

(3.7) 
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If a change of variables is made from the P, and I', to the r1 and ii, using (3.8), 
the Dirac brackets (3.6) are expressible in terms of the geometrical properties of the 
theory as follows: 

{ T,, A'}* = -8{, +'a}* =rLqkar (3.90, b )  

{T,, Pa)*=O, i T t 9  = ' 9  (3.9c, d )  

{T,, el}* = -ikllkl$'a+ka, { $ l a ,  PPI* = -ih1J8ap. (3.9e,f) 

Here r{k = hl"ah,,/aAk are the components of the connection. 
The transformations (3.8) are not unique since if a term BriJ ( B  real and arbitrary) 

is added to the RHS of ( 3 . 8 ~ )  and its complex conjugate to (3.8b), the Dirac brackets 
(3.9) are unchanged. 

Using (2.7), (3.1) and (3.8) it follows that the supercharges can be written in the form 

Qa = 2 ' / 2 ~ , p + z p ~ l ,  Q, = 21/2Eapppii1. (3.10) 

The above results show that the variables T '  and ii' lead to simpler expressions 
for the Hamiltonian and supercharges which is convenient for canonical calculations. 
In addition, we will see later that the simplicity of the expressions for the supercharges 
allows for a straightforward resolution of the operator ordering problem for these 
variables in the quantum theory. 

Using the relevant Dirac brackets it is easily shown that the supercharges, expressed 
in either of the two sets of variables introduced so far, obey the expected canonical 
supersymmetry algebras 

{Qa, O p } * = { Q a ,  Q p } * = O ,  { Qa, Q p } *  = -2iH6,,. (3.1 1 a, b )  

4. Simplified canonical equation 

We require a set of variables that decouples the Grassmann variables from the rest. 
To achieve this we introduce a vielbein transformation 

A = e: + l a ,  fiaa = PP$I,,  (4.1) 

where the vielbeins and their inverses are defined by h, = efZ,bTab, hIJ = efZiTab, 
epeb = efep = Sl, and Tab is the locally flat metric. Using (4.1) and (3.9) we deduce 

{A",, Xb,}* = - iTabaap,  (4.2a, b )  

{A",, A'}* = {iaa, A'}* = 0, (4.2c, d )  

{iaa, TI}* = U & ' , i b ,  (4.2e) 

{A ',, hbp}* = 0, 

{ A a , ,  PI)* = w a d  'a, 

where the spin connections are defined by 

(4.3a) 

(4.3b) 

The notation aebk/aA' = e:i, etc, and the fact that the only non-vanishing components 
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of the connection are those with all indices either 'holomorphic' or ' antiholomorphic' 
(Alvarez-Gaume and Freedman 1980, Flaherty 1976) has been used. 

Relations ( 4 . 2 d )  and (4 .2e )  motivate the change of variables 

(4 .4 )  

( 4 . 5 a )  

- b  R, = r, +iw5iaA aAacI .  

so that 

{ Ri, A ',}* = { Ri, ioa}* = 0, 

thus decoupling the Grassmann variables from the rest. The other Dirac brackets 
involving the R, are 

(4.5b, c)  

( 4 . 5 d )  

In terms of these variables the supercharges are 

Qa = 2 1 ' 2 ~ , p e > A d p (  Ri - iwLiaibyA ",, ea =2"2&,p2didp(R, +iw,jbhb,h;), (4.6) 

and they obey the expected canonical algebra (3.1 1). 
The important property of (4 .2)  and (4.5) is that the 'diagonal' structure of the 

Dirac brackets allows an explicit representation of the corresponding quantum 
mechanical algebra. The bosonic sector is represented in terms of diff erential operators 
with respect to the fields A' and the fermionic sector with creation and annihilation 
operators or their matrix equivalent. 

5. Quantisation 

The quantum mechanical theory is obtained by replacing the Dirac brackets by -i 
times the appropriate quantum bracket and taking x, = 0 in the Hamiltonian. 

We consider in turn the three sets of variables previously introduced and write 
down the fundamental quantum commutators and anticommutators for each set of 
variables. 

Using (3.6) and the above prescription we obtain 
( i )  Variables A', P', 4' 

[P,, A.'] = -ii3:, IcL'a, 3 ' p )  = h y 8 a p ,  (S.la, b )  

( 5 . 1 ~ )  

( 5 . l d )  

In ( 5 . 1 )  there is no operator ordering ambiguity, not even in ( 5 . l d )  and (5 . l e )  
where the two possible orderings of the fermionic fields lead to expressions that differ 
by a term proportional to 
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and 

respectively. Both of these terms vanish identically as is verified by a relabelling of 
the dummy indices. 

From (3.9) we deduce 
(ii) Variables A', T I ,  r L i P  

[ T,, A'] = [E,,  A'] = -i8:, (5.2a, b )  

[TI, $ 'a l= i r :k(Lku,  [ E ,  P,] = iF:k$k,, (5.2c, d )  

[TI, = kz,kl$k$kol - 2 B r k , J *  (5.2e) 

Only in (5.2e) is there any ambiguity in the ordering of operators, as is expressed 
by the term with the arbitrary coefficient B. This is understood in terms of the ambiguity 
in the quantum version of (3.8). In fact demanding consistency of (5.2) with (5.1) we 
obtain 

{*I,, P p  1 = h y&3, 

i ah,, -, 
2 aA 

rTT, = P, -- y+ ,+", +iBT;,. (5.3) 

A consistent formalism can be achieved with an arbitrary coefficient B, but for 

Finally for the set of variables defined by (4.1) and (4.4) we have without ambiguity 
simplicity, we adopt the natural choice B = 0. 

the following non-vanishing commutators and anticommutators 

{A",, ibp} = qabsap. [RI, A'] = [E , ,  A'] = -i8:, (5.4a, b )  

6. The quantum mechanical supercharges and Hamiltonian 

The supersymmetry algebra in the quantum theory is 

where H is the operator ordered Hamiltonian. 
The operator ordering problem for the supercharges and H by virtue of (6.1 b )  is 

resolved uniquely by demanding that they satisfy the above algebra and have the 
correct classical limits. The following results are obtained for the three sets of variables 
introduced above: 

Q, = 2 " ' ~ , ~ (  PI-- i -+ ah,, -" y * m y ) $ i p  

2 dA' ( 6 . 2 ~ )  

(6.3a) 

(6.3 b )  

( 6 . 4 ~ )  
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H = (RI - iw 6,ai byhay)  h" (R, + i 0  E , d i c 4  d y )  4-4 kabcd h ba&apidph ay&ybh '8.  

In (6.4b) we have used the definition kabcd = eLP6e,kP~kckr. 
If the above expressions for the supercharges and Hamiltonian are to be compatible 

with each other we must have the following relationships between the three sets of 
operator variables: 

(6.4b) 

These equations are deduced by either demanding consistency with the commutation 
relationships (given in $ 5 )  satisfied by the variables occurring in them or, more easily, 
by inspection of (6.2), (6.3) and (6.4). 

It should be remarked that the results of this section reflect the choice ( B  = 0) made 
in connection with (5.2). 
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